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ABSTRACT

The processes and mechanisms of melting and their applications to chondrule forma-

tion are discussed. A model for the kinetics of congruent melting is developed and used

to place constraints on the duration and maximum temperature experienced by the

interiors of relict-bearing chondrules. Specifically, chondrules containing relict

forsteritic olivine or enstatitic pyroxene cannot have been heated in excess of 1901"C

or 1577°C, respectively, for more than a few seconds.

INTRODUCTION

Since the discovery of relict grains by Nagahara (1981) and

Rarnbaldi (1981), the emerging models of chondrule formation

have called for an origin by the melting of pre-existing solids (e.g.

Grossman, 1988). The realization that the majority of FeO-rich

chondrules have lost little Na (Grossman, 1988; Hewins, 1991a;

Grossman, this volume), coupled with experimental work on Na

loss from chondritic melts (Tsuchiyama etal., 1981) has led to the

idea that chondrules were melted in flash heating evettts of an

unknown dynamical nature (Grossman, 1988; Boss, this volume,

Concise Guide).

If chondrules were formed by the melting and dissolution of

minerals,' then a better understanding of these two processes is

needed, in order to derive constraints on the nature of the flash

heating event(s). Congruent melting is the process by which a solid

transforms above its melting point to a liquid of the same comtm_i-

lion, and will be the focus of this paper. Incongruent melting occurs

when a mineral solid-solution forms a liquid of different composi-

tion when heated above the sofidus but below the liquidus. In a

study of the incongruent melting of plagioclase (Tsuchiyama and

Takahashi, 1983) it was found that the kinetics of the reaction were

rate-limited by solid-state diffusion, as the solid also needs to

change composition, in order to maintain equilibrium. The slug-

gish kinetics of this type of process suggest that it will be unimpor-

tant during flash heating. Above the liquidus, a mineral solid

solution such as plagioclase or olivine will melt congruently

(Greenwood and Hess, 1995), as neither the liquid nor the solid

must change composition during the transition. Dissolution is the

proceu by which a mineral dissolves into a liquid of different corn-

position, and this occurs below the melting point of the solid.

Dissolution should be an important process during chondrule for-

marion (Greenwood and Hess, 1995), but will not be discussed

here.

In this paper, the mechanisms and kinetics of congruent melting

are examined. It is shown that the kinetics of congruently melting

minerals are best described by an interface-controlled model

(Wilson, 1900; Frenkel, 1932). This model is used to calculate the

melting rates of possible precursor minerals (Hewins, 1991b),

which leads to constraints on the durations and peak temperatures

of chondrule formation. The implications of congruent melting

during chondrule formation are considered below.

CONGRUENT MELTING: THEORY

Melting as a Continuous Transition

Studies of the melting transition in congruently melting materials

have historically focused almost exclusively on the instability of

the solid while neglecting the parallel reaction, the growth of the

fiquid (Boyer, 1985). At the melting point, homogeneous melting

models envision the solid catastrophically transforming to liquid at

all points in the crystalline lattice. Nucleation of the liquid is not

necessary. Various theories have been developed to explain this

bulk mechanical instability. Some examples of these are the

Lindemann criterion which links the melting point to a critical

amplitude of atomic vibrations (Lindemann" 1910), the vanishing

of the shear modulus (Born, 1939), and the generation of disloca-

tions (Poirier, 1986).

Continuous melting models are necessary, but insufficient com-

ponents to our understanding of the melting transition. Phenomena
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such as superheating (exposing the solid to temperatures above T.

the melting point) (Di Tolla etal., 1995) and surface melting (melt-

ing preferentially at surfaces of the crystal) (Frenken and van

Pinxteren, 1994) are not predicted by these theories. Though it has

long been known that some silicates can sustain large amounts of

superheat for considerable lengths of time (Day and Allen, 1905),

the proponents of continuous melting models were driven by the

early experimental observations that metals were melted almost

instantaneously at fractions of a degree of superheat (Ainslie et al.,

1961). In fact, metals can be superheated by several degrees

(Dages et al., 1987; Di Tolla et al., 1995), but due to the high rate

of melting it is generally difficult to observe. Also, homogeneous

melting models are at odds with the observation that melting is

invariably initiated at external surfaces (Tamman, 1925; Teraoka,

1993) and internal cracks and cleavage planes (Uhlmann, 1980).

The importance of the surface in initiating melting during molecu-

lax dynamics simulations of MgSiO3-perovskite has also been dis-

cussed by Belonoshko (1994).

Melting as a Discontinuous Transition

The contrasting view of melting is that the solid transforms to a liq-

uid discontinuously via a nucleation and growth mechanism, simi-

lax to crystallization (Tamman, 1925). A heterogeneous model

would predict that melt will form where the barrier to nucleation of

the melt phase is lowest, such as surfaces and lattice defects

(Ainslie et al., 1961). This agrees well with experimental observa-

tions.

If melting is considered analogous to crystallization, the princi-

pal difference being that liquids nucleate far more easily than crys-

tals (Ainslie et al., 1961), then growth of the melt phase can be

modelled with existing theories of crystal growth. This approach

has been utilized previously in the melting of silicates and oxides

(e.g. Wagstaff, 1969; Uhlmann, !971 ), and is described below.

CONGRUENT MELTING

VCiison-Frenkel Model

When a solid melts to a liquid of the same composition, it is found

experimentally that the growth of the melt is inversely proportional

to the viscosity of the liquid phase (Aiuslie et al., 1961). In melts

with low viscosity, such as metals and semiconductors, growth of

the melt is very fast and is generally rate limited by how fast heat

can be added to the interface (Spaepen and Turnbull, 1982). In

melts with high viscosity, such as silicates, growth is relatively

slow and is usually rate limited by the kinetics of the solid-liquid

transition. Several studies of themelting kinetics of silicates and

oxides have been completed to date (e.g. quartz, Seherex et al.,

1970; sodium disilicate, Fang and Uhlmann, 1984; diopside, Kuo

and Kirkpatrick, 1985; albite, Greenwood and Hess, 1994a). Each

used a Wiison-Frenkel model for normal growth to model their

data. A normal growth model is used when the interface is rough

on the atomic scale (atoms can be added or removed from any site

on the interface). The growth of the melt is envisioned as the prop-

agation of the solid-liquid interface from the surface into the crys-

tal. Molecular dynamics simulations of the melting of forsterite

have found that melting takes place layer-by-layer as the solid-liq-

uid interface migrates through the crystal (Kubicki and Lasaga,

1992), in accordance with the tenets of an interface-controlled

growth model. The normal growth model has been found to repro-

duce experimentally deternfined melting rates generally within an

order of magnitude (Greenwood and Hess, 1994b; Table 22. I). The

Wilson-Frenkel model is (Uhlmann, 1971):

u = (fD'/ao) I l-exp(-AG/kT)l (1)

where u is the growth rate, f is the fraction of sites available (f=l

for melting; i.e. atoms leaving the crystal are not limited to rigid,

fixed sites in the melt), D' is the kinetic factor for transport at the

interface, ao is the jump distance (in this model, it is usually taken

as twice the length of an important bond in the crystal structure;

e.g. 2 × Si-O for quartz, Ainslie et al., (1961)), T is the absolute

temperature, AG is the free energy change per atom of the transi-

tion at the temperature T, and k is Boltzmann's constant. If D" is

related to self-diffusion in the liquid, D, and the Stokes-Einstein

relation for diffusion is assumed (see discussion below), then:

D'_D=kT / (3_ao q) (2)

where rl is the viscosity of the melt, and substituting in (1),

u = [fkT / (3rtao 2 r/)][ l--exp(-AG/kT)] (3).

If AG<<kT, a condition satisfied for small superheats, we expand

(3) (Fine, 1964) to

u = [fiT/(3Xao2rl)](-AGIkT) (4).

Also, at small departures from equilibrium, AG,-AH_T/T m

(Kingery et al., 1976), and substituting into (4):

u =fAHtATI (Tm3nao2rlN^) (5)

where AHf is the molar heat of fusion, N^ is Avogadro's number,

T,, is the melting point, and AT=T-T,,, the amount of superheat.

Notice that we are now describing the melting per mole rather than

per atom. The functional form of the equation is also written as:

uq = KAT (6)

where K= fAHf/(Tm31r.a2N^) , and is considered a constant for

small superheatings. The parameter uq is termed the "normalized

melting rate", and a plot of ut] versus AT should be linear with a

slope equal to K for normal growth (Fang and Uhlmann, 1984).

Any deviations from a linear plot would suggest a significant tem-

pexature dependence of f, AHf, or ao (Wagstaff, 1969). An experi-

mentally determined plot of url versus AT for albite is shown in

Fig. 1 (Greenwood and Hess, 1994a; Greenwood and Hess, unpub-

lished data) and demonstrates the validity of using a normal growth

model to describe the melting of albite. The normal growth model

has also been shown to be appropriate for quartz (Scherer et ai.,

1970), cristobalite (Wagstaff, 1969), sodium disilicate (Fang and

Uhlmann, 1984), gexmanium dioxide (Vergano and Uhlmann,

1970), phosphorus pentoxide (Cormia et al., 1963a), and diopside

(Kuo and Kirkpatrick,1985).
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Fig. 1. Shown here is the experimentally determined normalized melting

rate, url (melting rate × viscosity) vs. AT ( the amount of superheat) for

albite. Line is a best fit to the data {open circles).
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Comparison of experimental and calculated rates

A comparison of rates calculated from equation (5) with experi-

menlal[_ determined rates is shown in Table I. A jump distance of

3A wa- used for the calculations, except for albite and germanium

dioxide, where a value of 3.5,_ was used. As mentioned above, the

jump distance is approximated as twice the length of an important

bond in the structure.

While there is some obvious disagreement, the calculated rates

are generally the same order of magnitude as the rates determined

by experiment. The largest discrepancies between the calculated

and experimental rates are for quartz and diopside, and illustrate

some of the experimental difficulties associated with measuring

melting kinetics. The melting kinetics of quartz, as well as the vis-

cosit._ of liquid SiO 2, are highly sensitive to atmospheric impurities

and _ater contamination, and large differences in melting rates

have been found by different researchers for quartz (Ainslie et al.,

1961 :Scherer el al., 1970). The reason for the large discrepancy

for diopside is not known, but may be related to the difficulty in

measuring high melting rates in a small range of superheating. A

similar problem was found in the determination of the melting

rates of sodium disilicate, where a second study by the same

research group found very different results (Meiling and Uhlmann,

1967: Fang and Uhlmann, 1984). At these high rates of melting, a

heating stage may be necessary for accurate determination of the

kinetics fFang and Uhlmann, 1984).

The Wilson-Frenkel model reproduces the experimental data in

five of the seven studies shown in Table 1 within an order of mag-

niiudt. While experimental difficulties may explain some of the

Table !. Comparison of experimental melting rates with rates calculated fro,_ eqn (5) at various superheats

Mineral AHffkJ/mol) Tm(*C) Tf°C) "q(Pa.s) AT ExptJCalc.

Quartz .1 9.40 z 14272 1500 9.71 x 107 _ 73 20.5

1600 1.50 x 10 _ 173 24.0

1650 6.26 x 106 223 10.4

Cristobalite 4 8.922 17262 1743 1,39 x los 3 17 6.3

1746 1.31x I06 20 7.9

1755 1.15 x los 29 9.7

Na2Si2Os s 37.72 8742 875 881 s I 2.I

880 805 6 2.1

884 662 10 1.8

GeOz6 15¢_ I I 146 I 119 2.95 × 1047 5 3.6
1125.5 2.69 x 104 _ 11.5 2.5

1130 5x 104s 22 5.1

Albite _ 64.52 1118' 1125 4.3 x los l0 7 0.4

1175 1.1 x los 57 0.4

1200 5.9 × los 82 0.3

PzOs" 21.8 n 580 n 589 4.38 x los tz 9 0.5
593 3.61 x l0 s 16 0.9

609 2.53 × IOs 29 0.8

Diopside 13 137.72 1391 J3 1393 0.9314 2 0.013

1399 0.91 8 0.013

1412 0.87 21 0.012

tMetastable melting, IScberer et al. (1970), 2Ricbet and Bottinga (1986), 3Urbain tn a/. (1982), 4Wagstaff (1969), SMeiling and Uhlmann (1967),

6Vergano and Uhlmann (1970), 7Fontana and Plummet (1966), ISharma eta/. (1979_, tCaeenwood and Hess (1994a), IoStein and Spera (1993), nCormia

et al. (1963a), tT<Y-x_mia eta/. (1963b), :SKuo and Kirkpatrick (1985)o t4calculated from Boctinga and Weill (1972).
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discrepancy, the equation may be fundamentally flawed, and this is

considered in the next section.

Discussion of Wilson-Frenkel model

The assumptions used to derive eqn. (2) are somewhat controver-

sial. The first assumption is that the diffusion in the interfacial

region can be equated to self-diffusion in the liquid. Cahn et al.

(1964) suggest that diffusivity in the interfacial region may be as

much as two orders of magnitude lower than diffusion in the bulk

liquid. In their theory, lower diffusivities arise from the quasi-crys-

talline nature of the liquid immediately adjacent to the interface. In

contrast, molecular dynamics simulations of argon suggest that the

diffusivity at the interface may be higher than in the bulk liquid

(Broughton et al., 1982). The nature of the solid-liquid interface is

not fully understood and is the subject of ongoing work (e.g. Moss

and Harrowell, 1994).

The second assumption used in eqn. (2) is the application of the

Stokes-Einstein equation to relate self-diffusion in the liquid and

the viscosity of the liquid. There has been some success in using

the Stokes-Einstein equation to model the diffusion of oxygen

(Shimuzu and Kushiro, 1984) and silica (Watson and Baker, 1991 )

in silicate melts, but in general the quantitative agreement is poor

(Kress and Ghiorso, 1995). Although the assumptions used in eqn.

(2) may be the source of divergence from the experimental rates.

the good agreement for the calculated rates of albite and sodium

disilicate suggests that the Stokes-Einstein equation may be appro-

priate for the melting of silicates. The viscosities of molten albite

and sodium disilicate at their melting points are 106 and 102 Pa.s.

respectively (Table 1). They also have different melt structures, a

fully polymerized albite melt and a somewhat depolymerized disil-

icate melt. Considering the large differences in viscosity, melt

structure, and melting rates between these two materials, the agree-

ment between the experimental and calculated rates harbors hope

for the possibility of using the Wilson-Frenkel model as a predic-

tive vehicle. We feel that this model can be used to predict melting

rates within an order of magnitude, and as will be shown below.

even two orders of magnitude difference will still lead to useful

constraints on chondrule formation.

Chondrules and the Protoplanetary Disk

MELTLNG DURING CHONDRULE FORMATION

In this section we consider the melting kinetics of possible chon-

drulc ['recursor minerals (Hewins, 1991b) and relict grains (Jones,

this _ o_ume). As the relict ,grains are, by definition, the only precur-

sor mi._erals to survive the last heating event, constraints on possi-

ble p_cursors and their grain sizes are poor. A mean chondrule

diame2r of - I mm (Grossman et aL, 1988) is taken as a maximum

prccur,)r grain size, though some chondrules are undoubtedly

larger. A minimum grain size for precursor minerals cannot be

quanu_:.ed, but it is noted that if the grain size is very small

(~100_ ,_), the melting points may be lowered due to size-depen-

dent n.,.=lting (Allen et al., 1986). The presence of fine-grained rims

and n;ztrix (Alexander et al., 1989) suggests that material in the

micror, to submicron range was present in the chondrule forming

regiot: In the analysis below we consider grains in the range of

1000 _'n to I0 p.m.

P_r minerals

Tim melting rates of possible chondrule precursor minerals calcu-

latedf_m eqn.(5)arelistedinTable2 forsuperheatsof 5 and I00

degw_. The jump distanceistakenas 3A (exceptalbite;3.5A).

Value: for the viscositiesof fayalite,diopside,[tl<ermanite,and

ensta_'.emeltswere determinedfrom Bottingaand Weill0972).

For fo_tefitemelts,viscositieswere firstdeterminedby calculating

value:inthe 1600 -1800°C rangeby the method of Bottingaand

Weill 1972),and then extrapolatingto the desiredtemperature.

The _-._ositiesfor albiteand anorthitemelts were determined

expen:nentally(Steinand Spera,1993; Cranmer and Uhlmann,

1981 t

Sh_-_,n in Fig. 2 are the melting rates of possible precursor min-

erals z- 1600°C. If the melting rates for these minerals are the fight

order cf magnitude, it becomes apparent that if any of these possi-

ble cb:ndrule precursors are exposed to temperatures in excess of

160(1:'C (with the exception of forsterite, T m = 1901"C) they will

proha.,-!y melt in seconds or less. in fact, for a grain radius range of

10 -10) p.m, even two orders of magnitude error for the calculated

melti_z rates still leads to complete melting of chondrule precursor

miner,..ls in seconds or less. At higher temperatures, the melting

Table 2. Melting rates calculated from eq_ (5) at superheast of 5 and 100 degrees

Mineral Tm(*C) Hf AT T{_) Calc. rate AT T(*C) Calc. rate
(KJ/mol) (ixm/s) (l_m/s)

Albite* i118 t 64.52 5 !123 4.3 x 10-_ 100 1218 4.3 x 10-3

Fayalite 12172 89.3 z 5 1222 5 x los 100 1317 1.7 x IOs

Diopside* 13913 137.72 5 1396 II 100 1492 3.8 x 102
_kct'mt. 14584 123.64 5 1463 1.6 x los 100 1558 1.3 x los
Anorthite 15572 133.02 5 1562 1.9 x 102 100 1657 8.2 x 103

Enst_titc t 15575 73.2 z 5 1562 n.a: 100 1657 2.7 x 104

Fotsterite 19016 142_ 5 1906 6.3 x 10s 100 2001 1.3 x lOs

i:i *Experimentally determined (see text), tSee text for di_ of earatatitemelting, tGteenwood tad Hess (1994a), ZRichetand Bottinga(1986). SKuo
and Kirkpatrick (1985), 'Hemingway eta/. (1986), SBowcm and Anderson (I 914), 6Rkhet eta/. (1993).
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Fig. 2. Shown here is a time vs. grain radius plot for melting kinetics at
1600"C. For example, at 1600°C an enstatite grain with a radius of t mm

will be completely melted in 0.12 seconds. (AT = superheat).

rates will necessarily increase rapidly (eqn. 5), suggesting that if

peak temperatures were below 19010C, the chondrule may consist

of melt and relict forsterite as a result of high temperature heating.

Heating above 1901"(2 will lead to complete melting of chondrules

in seconds or less, provided that the minerals listed in Table 2 are a

major proportion of the precursor assemblage.

Albite has been proposed as a chondrule precursor (Hewins,

1991a) to explain the 1:1 correspondence between Na and AI

found in FeO-rich chondrules, yet relict albite is not found in chon-

drules. At 1600°C (Fig. 2), a l mm radius albite grain would be

completely melted in less than 10 seconds. For grain radii in the 10

- 100 I.tm range, albite would be completely melted in less than 2

seconds at 1600°C. Using the experimentally determined url vs.

AT relationship shown in Fig. 1 for albite, the melting rates are

i lttm/s and 144 lttm/s at 1500°C and 1600°C, respectively. Clearly,

if albite is fine-grained (1 - 10 ttm) it could melt completely in a

flash heating event with a peak temperature as low as 1500"C. If

the peak temperature were higher (Hewins and Connoliy, this vol-

ume) then it is not surprising that we do not find relict albite in

chondrules.

Relict Grains

The presence of retict grains in chondrules (grains that survived the

last heating event) can help constrain the maximum temperatures

experienced by the host chondrnies during heating. Enstatitic

pyroxene and forsteritic olivine have been identified as relict grains

in FeO-rich porphyritic chondmles (Jones, this volume). Dusty

olivines have been identified as refict grains in FeO-poor por-

phyritic chondmles (Nagahara, 1981; Jones, this volume). The

common existence of relict olivine in chondrules constrains the

maximum temperature that the interiors of these chondrules expe-

rienoed to the melting point of forstexite, 1901°C (Ricbet et al.,

1993). Chondmles containing relict enstatite could not have been

heated in excess of 15770C, the liquidus temperature of enstatite,

for more than a few seconds. Enstatite melts incongruentiy, under-

going a petimeric reaction at 15570(2, forming a product of 95%

liquid and 5% forsterite, by weight. At 1577°C enstatite melts con-

gruently to a liquid of pure enstatite (Bowen and Anderson, 1914).

We have studied the congruent melting of an incongruently melting

compound above the liquidus in the plagioclase system (Ab89), and

find that the congruent melting model embodied in eqn. (5) is

appropriate for this type of reaction (Greenwood and Hess, 1995).

We therefore feel that the estimates for the melting rate of enstatite

above 1577°C are valid (Table 2, Fig. 2). As mentioned earlier,

incongruent melting is generally a slow process, rate limited by

solid-state diffusion• The interested reader is referred to

Tsuchiyama and Takahashi (1983) for a discussion•

DISCUSSION

• The constraints developed in this paper are for minerals transform-

ing to liquids via melting. The total destruction of a relict grain

and/or precursor mineral involves the incorporation of this nomi-

nally pure mineral melt into the bulk chondrule melt. This is syn-

onomous with liquid interdiffusion, and will necessarily take extra

time. For example, enstatite melts at a rate of -3700 pards, at

16000C. This enstatitic liquid would then need to interdiffnse with

the chondrule melt before cooling, otherwise it will recrystallize

with an anomalous core composition.

The melting rates calculated above assume there is enough

energy to melt chondrule precursor minerals, and that melting is

not limited by the transfer of heat to or away from the interface.

The observation that some chondrules were undoubtedly com-

pletely molten (e.g. Grossman, 1988) would seem to support this

assumption. Heat-flow limited melting would occur if the interface

could not maintain temperature., due to the loss of heat to the inte-

rior of the mineral or its surroundings. The low thermal conductivi-

ties of silicates (Kingery et al., 1976) should prevent this from

happening. The interested reader is referred to Spaepen and

Tumbull (1982) for a review of heat-flow limited melting.

The loss of heat from ehondrule mineral surfaces to the surround-

ings has recently been considered by Horanyi et al. (1995), wherein

they modelled chondrule formation in lightning discharges. They

conclude that there may not be enough energy available to com-

pletely melt silicates. In their paper, they model the loss of heat

from mineral surfaces to the surroundings by radiative cooling, an

assumption that is in direct conflict with constraints obtained from

dynamic crystallization experiments (Hewins, 1988). Also, the loss

of heat to clioudrule surroundings would probably only apply to

minerals near the exteriors of precursor aggregates, as minerals in

the interiors would be thermally insulated by the newly formed

molten ehondrule. These factors suggest that melting of chondrule

precursor mineral grains was not limited by heat flow.

CONCLUSIONS

1. Consideration of congruent melting kinetics explains why

most chondrule precursors did not survive flash heating

events. A congruent melting model can be used to calculate

melting rates.
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2. The presence of relict forsteritic olivine and enstatitic pyrox-

ene in chondrulcs provides the source of constraints on the

maximum temperature that the interiors of these chondrules

experienced. Chondrules containing relict grains of forsterite

and enstatite probably did not exceed temperatures of 1901 °C

and 1577°C, respectively, for more than a few seconds.

3. Albite can be a precursor and not a relict grain, even though it

has sluggish melting kinetics. Specifically, the melting rates

of albite at 1500°C and 1600°C are 11 ILtm/s and 144 lam/s.

respectively, suggesting that fine grained albite (< 10 Iam)

would completely melt in seconds or less for a peak tempera-

ture as low as 1500°C.

4. Chondrule formation models that attempt to explain the melt-

ing event(s) need to take into account the kinetics of melting

in order to constrain their formation characteristics.
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